DataFlow Analytics Platform – Technical Documentation

Table of Contents

  1. Getting Started Guide
  2. API Reference
  3. Troubleshooting Guide
  4. System Architecture Overview
  5. Security Implementation Guide
  6. Performance Optimization

Getting Started Guide

Overview

DataFlow Analytics Platform is a cloud-based data processing and visualization solution that enables organizations to transform raw data into actionable insights through automated pipelines and customizable dashboards.

Prerequisites

Before beginning installation, ensure your environment meets these requirements:

  • Node.js 18.x or higher
  • PostgreSQL 14.x or higher
  • Redis 6.x or higher
  • Minimum 8GB RAM
  • Docker and Docker Compose (for containerized deployment)

Quick Start Installation

Method 1: Docker Deployment (Recommended)

# Clone the repository

git clone https://github.com/company/dataflow-platform.git

cd dataflow-platform

# Start services

docker-compose up -d

# Initialize database

docker-compose exec api npm run db:migrate

docker-compose exec api npm run db:seed

Method 2: Manual Installation

# Install dependencies

npm install

# Configure environment

cp .env.example .env

# Edit .env with your database credentials

# Run database migrations

npm run db:migrate

# Start the application

npm run start:dev

Initial Configuration

After installation, access the platform at http://localhost:3000 and complete the setup wizard:

  1. Admin Account Setup: Create your administrator credentials
  2. Data Source Configuration: Connect your first data source
  3. Pipeline Creation: Set up your initial data processing pipeline
  4. Dashboard Setup: Create your first visualization dashboard

Verification Steps

Confirm successful installation by:

  • Accessing the web interface without errors
  • Creating a test data pipeline
  • Verifying data ingestion from connected sources
  • Generating a sample report

API Reference

Authentication

All API requests require authentication via JWT tokens obtained through the login endpoint.

POST /api/auth/login

Authenticate user and receive access token.

Request Body:

{

  “email”: “user@example.com”,

  “password”: “secure_password”

}

Response:

{

  “token”: “eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9…”,

  “refreshToken”: “dGhpcyBpcyBhIHJlZnJlc2ggdG9rZW4…”,

  “expiresIn”: 3600,

  “user”: {

    “id”: “uuid-here”,

    “email”: “user@example.com”,

    “role”: “admin”

  }

}

Data Pipelines

GET /api/pipelines

Retrieve all data pipelines for the authenticated user.

Parameters:

  • page (optional): Page number for pagination (default: 1)
  • limit (optional): Number of results per page (default: 20)
  • status (optional): Filter by pipeline status (active, paused, error)

Headers:

Authorization: Bearer {your_jwt_token}

Content-Type: application/json

Response:

{

  “pipelines”: [

    {

      “id”: “pipeline-uuid”,

      “name”: “Sales Data Pipeline”,

      “status”: “active”,

      “lastRun”: “2024-01-15T10:30:00Z”,

      “source”: {

        “type”: “database”,

        “connection”: “postgres-prod”

      },

      “transformations”: 3,

      “destination”: “data-warehouse”

    }

  ],

  “pagination”: {

    “page”: 1,

    “limit”: 20,

    “total”: 45,

    “pages”: 3

  }

}

POST /api/pipelines

Create a new data pipeline.

Request Body:

{

  “name”: “Customer Analytics Pipeline”,

  “description”: “Processes customer interaction data”,

  “source”: {

    “type”: “api”,

    “endpoint”: “https://api.crm.example.com/customers”,

    “authentication”: {

      “type”: “api_key”,

      “key”: “your-api-key”

    }

  },

  “transformations”: [

    {

      “type”: “filter”,

      “conditions”: {“status”: “active”}

    },

    {

      “type”: “aggregate”,

      “groupBy”: “region”,

      “metrics”: [“total_revenue”, “customer_count”]

    }

  ],

  “destination”: {

    “type”: “warehouse”,

    “table”: “customer_analytics”

  },

  “schedule”: “0 2 * * *”

}

Data Sources

GET /api/sources

List all configured data sources.

Response:

{

  “sources”: [

    {

      “id”: “source-uuid”,

      “name”: “Production Database”,

      “type”: “postgresql”,

      “status”: “connected”,

      “lastSync”: “2024-01-15T09:15:00Z”,

      “recordCount”: 1250000

    }

  ]

}

Error Responses

The API uses standard HTTP status codes and returns detailed error information:

{

  “error”: {

    “code”: “VALIDATION_ERROR”,

    “message”: “Invalid pipeline configuration”,

    “details”: {

      “field”: “source.endpoint”,

      “reason”: “URL format is invalid”

    },

    “timestamp”: “2024-01-15T10:30:00Z”

  }

}


Troubleshooting Guide

Common Installation Issues

Issue: Database Connection Failed

Symptoms: Application fails to start with “Cannot connect to database” error

Causes and Solutions:

  1. Incorrect credentials: Verify database credentials in .env file
  2. Database not running: Start PostgreSQL service
  3. # Ubuntu/Debiansudo systemctl start postgresql# macOS with Homebrewbrew services start postgresql
  4. Firewall blocking connection: Check if port 5432 is accessible
  5. Database doesn’t exist: Create the database manually
  6. CREATE DATABASE dataflow_platform;

Issue: Redis Connection Timeout

Symptoms: Slow page loads, session management errors

Solutions:

  1. Check Redis status:
  2. redis-cli ping# Should return “PONG”
  3. Restart Redis service:
  4. sudo systemctl restart redis
  5. Verify Redis configuration in .env:
  6. REDIS_URL=redis://localhost:6379REDIS_PASSWORD=your_redis_password

Pipeline Processing Issues

Issue: Pipeline Stuck in “Processing” State

Symptoms: Pipeline shows processing status for extended periods

Diagnostic Steps:

  1. Check pipeline logs:
  2. docker-compose logs api | grep pipeline-uuid
  3. Monitor resource usage:
  4. docker stats
  5. Verify data source connectivity:
    1. Test API endpoints manually
    1. Check database query performance
    1. Validate authentication credentials

Solutions:

  • Increase timeout values in pipeline configuration
  • Optimize data transformations for large datasets
  • Scale worker processes if processing multiple pipelines

Issue: Data Quality Validation Failures

Symptoms: Pipelines fail with validation error messages

Common Validation Rules:

  • Missing required fields: Ensure all mandatory columns are present
  • Data type mismatches: Verify numeric fields contain valid numbers
  • Date format errors: Use ISO 8601 format (YYYY-MM-DD)
  • Duplicate records: Check for unique identifier conflicts

Resolution Process:

  1. Review validation error logs in the pipeline detail view
  2. Examine source data for anomalies
  3. Update data transformation rules to handle edge cases
  4. Configure data cleaning steps before validation

Performance Issues

Issue: Slow Dashboard Loading

Symptoms: Dashboards take more than 10 seconds to load

Performance Optimization Checklist:

  1. Database query optimization:
    1. Add indexes on frequently queried columns
    1. Optimize JOIN operations
    1. Use query result caching
  2. Data aggregation:
    1. Pre-calculate common metrics
    1. Use materialized views for complex calculations
  3. Frontend optimization:
    1. Enable data pagination
    1. Implement progressive loading
    1. Cache visualization components

Issue: Memory Usage Spikes

Symptoms: System becomes unresponsive during large data processing

Memory Management:

  1. Monitor memory usage:
  2. docker stats –format “table {{.Container}}\t{{.MemUsage}}\t{{.MemPerc}}”
  3. Optimize processing batch sizes:
  4. {  “processing”: {    “batchSize”: 1000,    “maxMemoryUsage”: “2GB”  }}
  5. Configure garbage collection for Node.js applications:
  6. NODE_OPTIONS=”–max_old_space_size=4096″ npm start

Getting Additional Help

Log File Locations

  • Application logs: ./logs/app.log
  • Pipeline logs: ./logs/pipelines/
  • Database logs: /var/log/postgresql/
  • System logs: journalctl -u dataflow-platform

Diagnostic Commands

# Health check endpoint

curl http://localhost:3000/api/health

# Database connection test

npm run db:test

# Generate system report

npm run diagnostics:report

Support Contacts

  • Technical Issues: Submit ticket at support.dataflow.com
  • Documentation Updates: docs@dataflow.com
  • Emergency Support: Call +1-800-DATAFLOW (24/7)

System Architecture Overview

High-Level Architecture

The DataFlow Analytics Platform follows a microservices architecture pattern, designed for scalability, maintainability, and fault tolerance. The system is composed of several interconnected services that handle different aspects of data processing and visualization.

Core Components

API Gateway Service

  • Routes incoming requests to appropriate microservices
  • Handles authentication and authorization
  • Implements rate limiting and request validation
  • Manages API versioning and backward compatibility

Data Ingestion Service

  • Connects to various data sources (databases, APIs, file systems)
  • Handles data extraction with configurable scheduling
  • Implements retry logic and error handling
  • Supports real-time and batch processing modes

Processing Engine

  • Executes data transformations and business logic
  • Manages pipeline orchestration and dependencies
  • Provides data validation and quality checks
  • Supports custom transformation plugins

Storage Layer

  • Operational Database: PostgreSQL for application data
  • Data Warehouse: Optimized for analytical queries
  • Cache Layer: Redis for session management and temporary data
  • Object Storage: S3-compatible storage for files and backups

Visualization Service

  • Generates charts, graphs, and reports
  • Handles dashboard configuration and rendering
  • Provides export functionality (PDF, Excel, CSV)
  • Manages user preferences and saved views

Data Flow Architecture

[Data Sources] → [Ingestion Service] → [Message Queue] → [Processing Engine]

                                                              ↓

[Visualization] ← [API Gateway] ← [Storage Layer] ← [Data Warehouse]

Deployment Architecture

Production Environment

The platform is deployed across multiple availability zones for high availability:

Load Balancer Tier

  • Application Load Balancer (ALB) with SSL termination
  • Health checks and automatic failover
  • Geographic traffic distribution

Application Tier

  • Kubernetes cluster with auto-scaling capabilities
  • Container orchestration with Docker
  • Service mesh for inter-service communication

Data Tier

  • Primary-replica database configuration
  • Automated backups and point-in-time recovery
  • Read replicas for analytical workloads

Development Environment

Simplified single-node deployment using Docker Compose:

  • All services running on single host
  • Shared development database
  • Local file storage
  • Simplified networking configuration

Security Architecture

Authentication & Authorization

  • OAuth 2.0/OpenID Connect integration with enterprise identity providers
  • Role-based access control (RBAC) with granular permissions
  • Multi-factor authentication support
  • API key management for service-to-service communication

Data Security

  • Encryption at rest using AES-256 for all stored data
  • Encryption in transit using TLS 1.3 for all communications
  • Field-level encryption for sensitive data elements
  • Data masking for non-production environments

Network Security

  • Virtual Private Cloud (VPC) with private subnets
  • Security groups restricting access to necessary ports
  • Web Application Firewall (WAF) for attack prevention
  • VPN or private connectivity for data source access

Monitoring and Observability

Application Monitoring

  • Health checks for all services with automated alerting
  • Performance metrics collection and visualization
  • Error tracking with detailed stack traces
  • User activity monitoring for audit compliance

Infrastructure Monitoring

  • Resource utilization tracking (CPU, memory, disk, network)
  • Database performance monitoring with query analysis
  • Container orchestration metrics and events
  • Log aggregation with centralized searching and analysis

Security Implementation Guide

Authentication Implementation

JWT Token Management

The platform uses JSON Web Tokens for stateless authentication with the following configuration:

// JWT Configuration

const jwtConfig = {

  secret: process.env.JWT_SECRET, // 256-bit secret key

  expiresIn: ‘1h’,               // Token expiration time

  algorithm: ‘HS256’,            // HMAC SHA-256

  issuer: ‘dataflow-platform’,   // Token issuer

  audience: ‘dataflow-api’       // Intended audience

};

// Token validation middleware

const validateToken = (req, res, next) => {

  const token = extractToken(req);

  if (!token) {

    return res.status(401).json({ error: ‘No token provided’ });

  }

  jwt.verify(token, jwtConfig.secret, jwtConfig, (err, decoded) => {

    if (err) {

      return res.status(403).json({ error: ‘Invalid token’ });

    }

    req.user = decoded;

    next();

  });

};

Password Security

  • Minimum requirements: 12 characters, mixed case, numbers, special characters
  • Hashing: bcrypt with salt rounds of 12
  • Password history: Prevents reuse of last 12 passwords
  • Account lockout: After 5 failed attempts for 15 minutes

const bcrypt = require(‘bcrypt’);

const SALT_ROUNDS = 12;

const hashPassword = async (password) => {

  return await bcrypt.hash(password, SALT_ROUNDS);

};

const validatePassword = (password) => {

  const minLength = 12;

  const hasUpperCase = /[A-Z]/.test(password);

  const hasLowerCase = /[a-z]/.test(password);

  const hasNumbers = /\d/.test(password);

  const hasSpecialChar = /[!@#$%^&*(),.?”:{}|<>]/.test(password);

  return password.length >= minLength &&

         hasUpperCase && hasLowerCase &&

         hasNumbers && hasSpecialChar;

};

Data Protection

Database Security Configuration

— Create application user with limited privileges

CREATE USER dataflow_app WITH PASSWORD ‘secure_generated_password’;

— Grant only necessary permissions

GRANT SELECT, INSERT, UPDATE, DELETE ON user_data TO dataflow_app;

GRANT SELECT ON system_config TO dataflow_app;

— Enable row-level security

ALTER TABLE user_data ENABLE ROW LEVEL SECURITY;

— Create policy for data isolation

CREATE POLICY user_data_policy ON user_data

  FOR ALL TO dataflow_app

  USING (user_id = current_setting(‘app.current_user_id’)::uuid);

Encryption Implementation

const crypto = require(‘crypto’);

class DataEncryption {

  constructor(encryptionKey) {

    this.algorithm = ‘aes-256-gcm’;

    this.key = Buffer.from(encryptionKey, ‘hex’);

  }

  encrypt(plaintext) {

    const iv = crypto.randomBytes(16);

    const cipher = crypto.createCipher(this.algorithm, this.key, iv);

    let encrypted = cipher.update(plaintext, ‘utf8’, ‘hex’);

    encrypted += cipher.final(‘hex’);

    const authTag = cipher.getAuthTag();

    return {

      iv: iv.toString(‘hex’),

      encrypted: encrypted,

      authTag: authTag.toString(‘hex’)

    };

  }

  decrypt(encryptedData) {

    const decipher = crypto.createDecipher(

      this.algorithm,

      this.key,

      Buffer.from(encryptedData.iv, ‘hex’)

    );

    decipher.setAuthTag(Buffer.from(encryptedData.authTag, ‘hex’));

    let decrypted = decipher.update(encryptedData.encrypted, ‘hex’, ‘utf8’);

    decrypted += decipher.final(‘utf8’);

    return decrypted;

  }

}

API Security

Rate Limiting Configuration

const rateLimit = require(‘express-rate-limit’);

// General API rate limiting

const generalLimiter = rateLimit({

  windowMs: 15 * 60 * 1000, // 15 minutes

  max: 100,                  // Limit each IP to 100 requests per windowMs

  message: ‘Too many requests from this IP’,

  standardHeaders: true,

  legacyHeaders: false,

});

// Strict limiting for authentication endpoints

const authLimiter = rateLimit({

  windowMs: 15 * 60 * 1000, // 15 minutes

  max: 5,                    // Limit each IP to 5 login attempts per windowMs

  skipSuccessfulRequests: true,

  message: ‘Too many login attempts, please try again later’

});

app.use(‘/api/’, generalLimiter);

app.use(‘/api/auth/’, authLimiter);

Input Validation and Sanitization

const { body, validationResult } = require(‘express-validator’);

const DOMPurify = require(‘isomorphic-dompurify’);

// Validation rules for pipeline creation

const validatePipeline = [

  body(‘name’)

    .isLength({ min: 3, max: 100 })

    .matches(/^[a-zA-Z0-9\s\-_]+$/)

    .withMessage(‘Name must be 3-100 characters, alphanumeric only’),

  body(‘source.endpoint’)

    .isURL({ protocols: [‘http’, ‘https’] })

    .withMessage(‘Source endpoint must be a valid URL’),

  body(‘transformations’)

    .isArray({ min: 1, max: 50 })

    .withMessage(‘Must have 1-50 transformations’),

  // Custom sanitization

  body(‘description’).customSanitizer((value) => {

    return DOMPurify.sanitize(value);

  })

];

// Validation error handling

const handleValidationErrors = (req, res, next) => {

  const errors = validationResult(req);

  if (!errors.isEmpty()) {

    return res.status(400).json({

      error: ‘Validation failed’,

      details: errors.array()

    });

  }

  next();

};

Security Monitoring

Audit Logging Implementation

class AuditLogger {

  constructor(database) {

    this.db = database;

  }

  async logSecurityEvent(eventType, userId, details) {

    const event = {

      event_type: eventType,

      user_id: userId,

      ip_address: details.ipAddress,

      user_agent: details.userAgent,

      resource_accessed: details.resource,

      action_performed: details.action,

      timestamp: new Date().toISOString(),

      additional_data: JSON.stringify(details.metadata || {})

    };

    await this.db.query(

      ‘INSERT INTO security_audit_log (event_type, user_id, ip_address, user_agent, resource_accessed, action_performed, timestamp, additional_data) VALUES ($1, $2, $3, $4, $5, $6, $7, $8)’,

      Object.values(event)

    );

  }

  async logFailedLogin(email, ipAddress, userAgent) {

    await this.logSecurityEvent(‘FAILED_LOGIN’, null, {

      ipAddress,

      userAgent,

      resource: ‘/api/auth/login’,

      action: ‘LOGIN_ATTEMPT’,

      metadata: { email }

    });

  }

  async logSuspiciousActivity(userId, activityType, details) {

    await this.logSecurityEvent(‘SUSPICIOUS_ACTIVITY’, userId, {

      ipAddress: details.ipAddress,

      userAgent: details.userAgent,

      resource: details.resource,

      action: activityType,

      metadata: details

    });

  }

}

Security Alert Configuration

# security-alerts.yml

security_rules:

  – name: “Multiple Failed Logins”

    condition: “failed_login_count > 3 in 5 minutes”

    action: “block_ip”

    notification: “security-team@company.com”

  – name: “Unusual API Usage”

    condition: “api_calls > 1000 in 1 minute”

    action: “rate_limit”

    notification: “ops-team@company.com”

  – name: “Privilege Escalation Attempt”

    condition: “role_change_requested”

    action: “require_admin_approval”

    notification: “admin-team@company.com”

  – name: “Data Export Large Volume”

    condition: “export_size > 100MB”

    action: “require_approval”

    notification: “data-governance@company.com”


Performance Optimization

Database Performance Tuning

Query Optimization Strategies

Index Management The platform implements strategic indexing to optimize query performance across all data access patterns:

— Composite index for pipeline queries

CREATE INDEX CONCURRENTLY idx_pipelines_user_status_created

ON pipelines (user_id, status, created_at DESC);

— Partial index for active pipelines only

CREATE INDEX CONCURRENTLY idx_active_pipelines

ON pipelines (last_run_at DESC)

WHERE status = ‘active’;

— Full-text search index for pipeline names and descriptions

CREATE INDEX CONCURRENTLY idx_pipelines_search

ON pipelines USING gin(to_tsvector(‘english’, name || ‘ ‘ || description));

— Index for time-series data queries

CREATE INDEX CONCURRENTLY idx_pipeline_runs_timeline

ON pipeline_runs (pipeline_id, started_at)

WHERE status IN (‘completed’, ‘failed’);

Query Performance Monitoring

— Enable query statistics collection

ALTER SYSTEM SET track_activities = on;

ALTER SYSTEM SET track_counts = on;

ALTER SYSTEM SET track_io_timing = on;

ALTER SYSTEM SET log_min_duration_statement = 1000; — Log slow queries

— Query to identify slow queries

SELECT

  query,

  calls,

  total_time,

  mean_time,

  stddev_time,

  rows

FROM pg_stat_statements

ORDER BY total_time DESC

LIMIT 10;

Connection Pool Configuration

const pool = new Pool({

  host: process.env.DB_HOST,

  port: process.env.DB_PORT,

  database: process.env.DB_NAME,

  user: process.env.DB_USER,

  password: process.env.DB_PASSWORD,

  // Pool configuration for optimal performance

  max: 20,                    // Maximum number of connections

  min: 5,                     // Minimum number of connections

  idleTimeoutMillis: 30000,   // Close idle connections after 30s

  connectionTimeoutMillis: 5000, // Wait 5s for connection

  maxUses: 7500,              // Refresh connection after 7500 uses

  // Query timeout

  query_timeout: 30000,       // 30 second query timeout

  // SSL configuration for production

  ssl: process.env.NODE_ENV === ‘production’ ? {

    require: true,

    rejectUnauthorized: true

  } : false

});

Application Performance

Caching Strategy Implementation

Redis Cache Configuration

const Redis = require(‘ioredis’);

class CacheManager {

  constructor() {

    this.redis = new Redis({

      host: process.env.REDIS_HOST,

      port: process.env.REDIS_PORT,

      password: process.env.REDIS_PASSWORD,

      retryDelayOnFailover: 100,

      maxRetriesPerRequest: 3,

      lazyConnect: true,

      // Connection pool settings

      maxclients: 100,

      // Memory optimization

      maxmemory: ‘512mb’,

      ‘maxmemory-policy’: ‘allkeys-lru’

    });

  }

  async get(key, fallbackFunction, ttl = 3600) {

    try {

      const cached = await this.redis.get(key);

      if (cached) {

        return JSON.parse(cached);

      }

      const data = await fallbackFunction();

      await this.set(key, data, ttl);

      return data;

    } catch (error) {

      console.error(‘Cache error:’, error);

      return await fallbackFunction(); // Fallback to direct data fetch

    }

  }

  async set(key, data, ttl = 3600) {

    try {

      await this.redis.setex(key, ttl, JSON.stringify(data));

    } catch (error) {

      console.error(‘Cache set error:’, error);

    }

  }

  async invalidatePattern(pattern) {

    const keys = await this.redis.keys(pattern);

    if (keys.length > 0) {

      await this.redis.del(…keys);

    }

  }

}

// Usage example

const cache = new CacheManager();

app.get(‘/api/pipelines’, async (req, res) => {

  const cacheKey = `pipelines:user:${req.user.id}:${JSON.stringify(req.query)}`;

  const pipelines = await cache.get(cacheKey, async () => {

    return await pipelineService.getUserPipelines(req.user.id, req.query);

  }, 1800); // 30 minutes TTL

  res.json(pipelines);

});

Memory Management

Memory Usage Monitoring

const { performance } = require(‘perf_hooks’);

class MemoryMonitor {

  constructor() {

    this.startMonitoring();

  }

  getMemoryUsage() {

    const usage = process.memoryUsage();

    return {

      rss: Math.round(usage.rss / 1024 / 1024), // MB

      heapTotal: Math.round(usage.heapTotal / 1024 / 1024),

      heapUsed: Math.round(usage.heapUsed / 1024 / 1024),

      external: Math.round(usage.external / 1024 / 1024),

      arrayBuffers: Math.round(usage.arrayBuffers / 1024 / 1024)

    };

  }

  startMonitoring() {

    setInterval(() => {

      const usage = this.getMemoryUsage();

      // Alert if memory usage exceeds threshold

      if (usage.heapUsed > 500) { // 500MB threshold

        console.warn(‘High memory usage detected:’, usage);

        // Trigger garbage collection if needed

        if (global.gc) {

          global.gc();

        }

      }

    }, 30000); // Check every 30 seconds

  }

}

// Memory-efficient data processing

class DataProcessor {

  async processLargeDataset(data, batchSize = 1000) {

    const results = [];

    for (let i = 0; i < data.length; i += batchSize) {

      const batch = data.slice(i, i + batchSize);

      const processed = await this.processBatch(batch);

      results.push(…processed);

      // Clear batch from memory

      batch.length = 0;

      // Allow garbage collection between batches

      if (i % (batchSize * 10) === 0) {

        await this.sleep(10); // Small delay for GC

      }

    }

    return results;

  }

  sleep(ms) {

    return new Promise(resolve => setTimeout(resolve, ms));

  }

}

Frontend Performance

Bundle Optimization Configuration

// webpack.config.js

const path = require(‘path’);

const CompressionPlugin = require(‘compression-webpack-plugin’);

module.exports = {

  mode: ‘production’,

  optimization: {

    splitChunks: {

      chunks: ‘all’,

      cacheGroups: {

        vendor: {

          test: /[\\/]node_modules[\\/]/,

          name: ‘vendors’,

          priority: 10,

          enforce: true

        },

        common: {

          minChunks: 2,

          priority: 5,

          reuseExistingChunk: true

        }

      }

    },

    usedExports: true,

    sideEffects: false

  },

  plugins: [

    new CompressionPlugin({

      algorithm: ‘gzip’,

      test: /\.(js|css|html|svg)$/,

      threshold: 8192,

      minRatio: 0.8

    })

  ],

  resolve: {

    alias: {

      ‘@components’: path.resolve(__dirname, ‘src/components’),

      ‘@utils’: path.resolve(__dirname, ‘src/utils’)

    }

  }

};

React Component Optimization

import React, { memo, useMemo, useCallback } from ‘react’;

import { debounce } from ‘lodash’;

// Memoized component to prevent unnecessary re-renders

const PipelineListItem = memo(({ pipeline, onStatusChange, onEdit }) => {

  const handleStatusChange = useCallback((newStatus) => {

    onStatusChange(pipeline.id, newStatus);

  }, [pipeline.id, onStatusChange]);

  const statusColor = useMemo(() => {

    return pipeline.status === ‘active’ ? ‘green’ :

           pipeline.status === ‘error’ ? ‘red’ : ‘gray’;

  }, [pipeline.status]);

  return (

    <div className={`pipeline-item status-${pipeline.status}`}>

      <h3>{pipeline.name}</h3>

      <span style={{ color: statusColor }}>{pipeline.status}</span>

      <button onClick={handleStatusChange}>Toggle Status</button>

    </div>

  );

});

// Debounced search to reduce API calls

const SearchInput = ({ onSearch }) => {

  const debouncedSearch = useMemo(

    () => debounce((query) => onSearch(query), 300),

    [onSearch]

  );

  return (

    <input

      type=”text”

      placeholder=”Search pipelines…”

      onChange={(e) => debouncedSearch(e.target.value)}

    />

  );

};